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Abstract Using an early theory by Houghton and Maki based on the BCS model. which assumes 
a temperahwe-independent relaxation time T,. we compute the flux-flow magnetoresistivity 
p,(T, H) of layered superconducton n w  Hc2 in the clean limit. Then we use our results 
to analyse the magnetoresistivity e w e s  of single-erystaJ YBaCuO. fitending the validity of 
the calculation to a temperaturedependent r. we find that for constant T, or for relaxation times 
obtained from experiments, the theory reproduces qualitatively the saturation-like behaviour of 
the observed magnetoresistance, and also the broadening of the resistive transition, 3s well as the 
changes in the slope d&(T)/dT with field. However, quanritative agreement with expeimentr 
is not achieved. This allows an estimate to be made of the contribution of the thermal vortex 
line fluctuations to the total dissipation; we find the former to be about 10% of the latter. 

1. Introduction 

The microscopic theory of flux-flow conductivity in pure type-I1 superconductors was 
analysed in early work by Maki and Houghton [1,2]. Using the Bcs theory and the Green- 
function formalism, these authors derived the expression for the flux-flow conductivity in 
high field at 0 K for conventional 3D superconductors. Their results have led to a better 
agreement between theory and experiments. To our knowledge, no extension of this work 
to other cases in the framework of BCS theory has since been carried out. 

The mixed phase of high-temperature superconductors is characterized by a broad 
resistive transition. Flux-flow conductivity in that context has been discussed essentially 
from a phenomenological point of view, based on the Ginzburg-Landau-functional approach 
[3]. This approach seems reasonable in view of the complexity of a microscopic description 
of the vortex liquid (VL) state. A VL is most likely the correct description of the mixed 
phase in cuprates at temperatures sufficiently close to the superconducting temperature. 
The phenomenological approach, however, leaves aside a number of questions. For one 
thing, it is appropriate in the dirty limit, when the mean free path I is small compared to 
the Pippard coherence length ca(0), while superconducting cuprates are in the clean limit, 
I >> ta(0) [ G I .  For another, the viscosity q, which is basic to the description of transport 
phenomena i n h e  mixed phase in the absence of pinning, is assumed to be related to the 
normal-state resistivity p.. This assumption is valid in conventional superconductors, where 
the low-temperature normal-resistivity state is dominated by elastic scattering processes 
due to impuritiei and is temperature independent. In cuprates, however, the normal-state 
resistivity is strongly temperature dependent, indicating that inelastic scattering processes 
are at work, most probably due to a spin-fluctuation phenomenon [7], related to the very 
microscopic phenomenon of superconductivity in cuprates [SI. The temperature dependence 
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of the vortex viscosity is in fact an open question at this time; its solution depends on a 
reliable microscopic theory of high-temperature superconductivity, about which the battle 
is still raging. It is very likely that in cuprates the appearance of superconductivity leads to 
important changes in the quasiparticle scattering rate and its temperature dependence below 
Tc. Experiments on YBCO exhibit a large enhancement of the real conductivity q(o) at 
low frequency [9], which points to a dramatic increase of quasiparticle lifetime below Tw 
This question is in turn related to the symmetry of the superconducting order parameter: 
Ginzburg-Landau expansions, usually, as well as BCS theory, assume s symmetry, while 
experiments point to a d wave [lo]. 

A fully reliable microscopic theory of flux-flow conductivity in cuprates depends 
on a reliable microscopic theory of the superconducting mechanism itself, which would 
presumably encompass the microscopic theory of transport phenomena in the normal phase, 
as well as a description of the quasiparticles in the condensed phase [SI. 

This paper is an attempt (far from completely satisfactory) at bridging the gap between 
phenomenological and microscopic theories, by extending Houghton and Maki’s work to 
pure layered systems at finite temperatures in the clean limit, assuming an s-wave order 
parameter. This admittedly does not answer all the demands of a reliable theory; the model 
is based on a temperature-independent (elastic) impurity scattering process and on a Green- 
function approach, which describes an average regular vortex line lattice (VLL); the dynamic 
fluctuations of the order parameter we take into account do not correspond to a VL, but to 
the dynamic fluctuations of the order parameter in an ordered VLL. 

Our hope is that it is nevertheless meaningful to tinker somewhat and extend the validity 
of such a treatment to a temperature-dependent r (T) ,  due to inelastic scattering processes 
which we do not take into account in a consistent way. What we find is that for any r 
we choose, the theory qualitatively accounts for the broadening of the resistive transition 
and the changes in the slope dp,(T)/dT with field as well as the saturation-like behaviour 
of the observed magnetoresistance near HQ. However our approach is unable to account 
quantitatively for the observed dissipation. The ‘most’ dissipative’ result (i.e. that which 
corresponds to the shortest 5 )  yields a conductivity gain twice larger than the observed 
one. We are naturally tempted to ascribe the unaccounted dissipation to the vortex line 
fluctuations. Thus this latter term is estimated to be roughly from 5% to 15% of the total 
dissipation. 

The remainder of the paper is divided into four sections: in section 2, we derive 
the theoretical expression of the flux-flow conductivity of layered compounds in magnetic 
fields H slightly smaller than H,(T) using the theory of Houghton and Maki. Then, in 
section 3, we evaluate numerically the theoretical expression of the flux-flow conductivity. 
In section 4, we use our model to analyse the magnetoresistivity curves of single-crystal 
YBCO. Section 5 is devoted to some concluding remarks. 

2. Flux-flow conductivity in layered compounds 

We consider a layered superconductor made up of superconducting planes packed along an 
axis we shall refer to as the c axis. We also assume a configuration where the magnetic 
field is applied along the c axis, and the electric field is applied in the a-b plane. Taking 
into account the dynamical fluctuation of the order parameter, the flux-flow conductivity 
can be written as a sum of two contributions [Z] (see the appendix): 
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where the static part us' and the fluctuation part U' of U can be expressed in terms of the 
correlation functions ([jx, jz]), ([h, W]) and ([W, W+]) as follows: 

where Ajj, Aj* and &(O) are given by 

(G, jl)(-iw) = (G, j l ) ( O )  - iwAjj + O(wz) 

{G, Wl)(-iw) = (E. Yl)(O) - iwAp +O(w2) 

(4) 

(5) 

(6) DI(0) = Iglm - Igl~[~,Yy+I)(O)1. 

g is the BCS coupling constant. The comelator of equation (5) expresses the coupling 
between the current and the fluctuations of the order parameter. We refer the reader to the 
appendix and to [ll] and [12] for the details leading to the derivation of the above set of 
equations. In order to evaluate Ajj, we consider the isotropic 3D expression for Ajj given 
in [Z] and apply it to our case. Thus we take sin0 = 1, where 0 is the angle between the 
momentum p and the magnetic field H ,  and we have 

CO dw - sech' (E) [II + Id 1 2T 
A.. - e2p; 
" - (2x)3m'u Re [ (7) 

where 

and 

I2 = A ' S  d{dup(u)F(t, U ,  w +  iS)F({, u , w  - is) (9) 

with p(u)  = (8,E-1e-(u/e)' and E = k u ~ .  k = is the reciprocal lattice vector of 
the flux-line lattice; { = U& - p ~ ) ;  d is the interlayer distance. 

Following Houghton and Maki, we are making use of the Brandt, Pesch and Tewordt 
(BPT) Green functions in our expressions 1131. Brandt, Pesch and Tewordt have derived an 
approximate expression of the Green function for pure type-II superconductors near Hc2 in 
the case where the space variations of the order parameter are neglected by disregarding the 
small components fork # 0 with respect to that at k = 0 in the Fourier-series development 
of the order parameter. This approximation becomes very good in the London l i t ,  i.e. 
when K >> 1 where K = h(O)/{(O).  h(0) and t ( 0 )  are respectively the penetration length 
and the coherence length. We will suppose that this limit is relevant for our system. The 
BPT Green function G is given by 

and the function F is written aS 
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In the clean Limit, the scattering effect is taken in account by taking 6 = 1/27, where r 
is the transport lifetime. 

One should stress that the BPT Green function assumes that the vortex lattice is ordered, 
so that any effect due to loss of long-range order of the vortex lattice, such as a VL state, 
is completely neglected in our approach. 

Carrying out the integration in equation (8), we find 

ZI = ( 4 n z r / d ) [ l  + pe-(b/e)2]-' (12) 

where 

p = 2J??tA2/E = 2&1k(A/E)2 = ~J~;[~,(A/E)~[H/H,(T)I'/~ 

kc = Jm and I = UFZ. UF is the Fenni velocity. Similarly, in&grating equation (9) 
we find 

Z2 = (8n3/2A2~2/~d)e-(b/E'I[1 + pe-(b/E)']-', (13) 

(7) then becomes 

Ajj = [ e 2 p ~ / ( ~ ) " m 2 u ] 4 n 2 s / d  = ne2r/m = U  (14) 

where n = p$/;??rd. On the other hand, considering the expression for Ajq, given in [2], 
we can rewrite this quantity for our case as follows: 

0 Ajq - 26ApF - sech2 (-) 2T Z (2~)) ZT 

where 

I = q G ( $ , w + i J )  dolp(or)F(6,a,w-i8) (16) s s 
with d o l )  = or(2 / l r ) ' /2 (4 /~2)e- (~/e) ' .  
becomes 

After carrying out the above integration, (15) 

A ~ w  = ( 2 e A p ~ / n h ) ( z / ~ d ) H ( ~ )  (17) 

where 

The function F is defined as 

We can approximate the quantity Dl(O)([j, Q])(O) by the corresponding result obtained by 
Caroli and Maki in the case of an oscillating transverse field when w ,  q -+ 0 [12]. This 
leads to the following expression for U': 

ufl = 16a(A/E)'H(p). (20) 

us = us' + uE = ~ [ l  + 16(A/E)2H(p)].  (21) 

Hence 
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3. Numerical calculations 

In order to evaluate equation (21) numerically, and for future comparison with experimental 
data on YBCO we take Tc = 90 K, uF = 105 m s-', and for 1 = U F ~ ,  we consider three 
different cases: 

(i) 5 =constant = 0.74h/kBTc; 
(ii) 7 = 0.74h/kBT and 
(iii) 5 = 1.14 x 10-'Oe-*/'Z. 

The expression for t in (ii) has been deduced from the normal resistance in the u-b plane of 
monocrystals of YBCO [14]. In (i) t is taken as constant and equal to its value at T, given by 
equation (22). The temperature variation of t in (iii) has been derived by Bonn et al from 
a microwave surfaceresistance study below 191. We note the semiphenomenological 
character of cases (ii) and (iii) since a strict BCS model implies that 7 is constant. 

We derive the quantity H,,(T) from the BCS upper-critical-field expression worked out 
by Maki in the case of high-T, superconductors [ S I .  The values of H,,(T) are shown 
in figure 1. For A' we consider the following equation derived by Brandt 1161 which 
determines A' as a function of T and H for pure type-I1 superconductors in the vicinity of 
%U'): 

where dV(x)/dx = W(i). The function W(z) is defined as 

+m e-t2 

W(z) = - dt-. 
a -m z - t  

mt = 2aT(I + i) is the Matsubara frequency; EO = !+UP and xo is determined by 

2 ~ / ~ s i n 0  - x ~ + ~ ( A / & s i n O ) ' W ( i o )  =o. 
Solving equation (26) with sin0 = 1 yields 

where the xo-dependent number 01 is comprised between 4 /a  and 2 and is given by 

Using the expression for xo above, we compute numerically equation (24) with sin0 = 1 
and thus derive the values of the square of the order parameter A' for different values of 
the temperature T and the magnetic field H .  The numerical results for A' as a function of 
T and H arc shown in figures 2 and 3. 

Finally, calculating equation (21). we then obtain figures 4-6. In figure 4, p,(T)/p(T,) 
is reported for the three cases (i), (ii) and (ai) at a magnetic field ,of 19 T. In figures 5 
and 6, p,/p(T,) is shown respectively as a function of T for different magnetic fields, and 
as a function of H for different temperatures. ps = U;' and p-'(T,) = ne't(T,)/m. We 
neglect here the Hall conductivity. 
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Figure 2. The temperature dependence of the square of the order panmeter for different values 
of the magnetic field. 

4. A comparison With experimental data on YBCO 

A remarkable feature exhibited by the high-T, oxides is the anomalous broadening of their 
resistive transition under a magnetic field. The magnetoresistance p ( H  I I )  with H 
perpendicular to I appears initially to increase almost linearly with H, and then saturates 
after a transition region. Various mechanisms have been suggested to explain the origin of 
the dissipative process related to these behaviours [17]. The most widely accepted view 
is that this regime corresponds to a VL phase, which transforms at lower temperature in 
a pinned vortex glass [9. In this section, we are interested in the observed experimental 
behaviours OP the p(T,  H) curves of single crystals or oriented films of YBCO obtained in 
the field and current geometry relevant to our work. 
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Figure 4. Magnetoresistivity curyes ne= T,(H) at H = 19 T when r =constant (curye a), 
r - T-' (curve b) and r - e-T/To with ??I = 12 K (curve c). The vertical bars represent the 
experimental results obtained by Oh et al 1171. 

In figure 4, where p,/p(T,) is plotted as a function of T - T,(H), the vertical bars 
represent the experimental results of ps obtained by Oh et al at 18.9 T in highly oriented 
films of YBCO when H is perpendicular to the CuO planes [17]. The experimental pr 
has been normalized by the quantity p(TJ deduced from experiments. Uncertainties in 
experimental data arise mainly from. the determination of Tc. The theoretical curves a, 
b and c in figure 4 exhibit a clear broadening of the resistive bansition. There is only 
a slight difference between curves a and b, while curve c shows a remarkable difference 
with regard to curves a and b. We note also that quantiative agreement is not improved 
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Figure 6. Magnetoresistivity CUNS near H<%(T) for different values of the temperature when 
T is constant. 

when temperature-dependent relaxation rates are considered. In figure 5, p,(T)/p(T,) is 
reported for different values of H, when T is constant (case (i)). The curves show a 
resistive transition broadening, as well as a clear decrease of the slope with increasing field. 
Figure 6 depicts the variations of ps versus H at various temperatures when 5 is constant 
(case (i)). We note the small deviations from linear behaviour shown by the curves p , (H)  
at different temperatures. For the various temperatures considered, when H varies from 
H,(T) to O.75HQ(T), p,(H)/p(T,) presents only a variation of about 2% T-l, indicating 
a saturation-like behaviour of the p(H) curves at different temperatures in the vicinity of 
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H,(T). When r - T-’ (case (ii)) or T - e-’/‘* (case (iii)) we find qualitatively the 
same behaviours for the curves p,(H)/p(T,) at different temperatures and for the curves 
p,(T)/p(T,) at~different magnetic fields. 

5. Discussion and conclusions 

Our calculation, which takes into account the dynamical fluctuations of the order parameter 
in the otherwise rigid v u ,  extends to layered compounds and finite T the 3D and 0 K 
calculations of Maki and Houghton [2]. It is based on the clean limit of the BCS model 
and the high-field approach of Brandt et al [13], which describes the incipient Abrikosov 
lattice in the vicinity of H,(T). When compared with experiments, our results account 
for the broadening of the resistive transition and the decrease of the slope dp,(T)/dT with 
increasing field, as well as the saturation-like behaviour of the magnetoresistivity curves 
near H , ( T ) .  However, the ‘most dissipative’ result, which comesponds to a constant T,  
yields a too steep decrease of the resistivity with T when compared to experiments. The 
observed flux-flow resistivity is larger than the theoretical result by at least 5% (about 15% 
for the case of a sharp increase in T as T decreases below Tc-choice (iii)). 

In high-T, cuprates, a temperature-independent T is not likely. The normal-state 
resistivity is dominated by inelastic processes, which are very likely to be strongly affected 
by the superconducting transition. Thus our result for constant r is quite probably a 
minimum estimate of the conductivity gain within the VLL, due to the order-parameter 
dynamic fluctuations. The difference between the experimental result and our theoretical 
one may be ascribed to the vortex lines’ fluctuative thermal motion. It is striking that 
within the temperature interval we consider, this latter term is only about 5% to 15% of the 
observed dissipation. Our calculation does not reliably allow us to explore the intermediate 
temperature ranges. However it suggests that it is dangerous to interpret the observed flux- 
flow conductivity in high-T, cuprates as due essentially to VL effects. If this is so, the 
question arises of the mechanism behind the transition to a zero-resistivity state at finite 
temperature in the mixed phase, ascribed within phenomenological theories to the formation 
of vortex glass [3]. Within a microscopic approach, such a transition must be associated 
with a qualitative change of the low-frequency excitation spectrum, possibly because of 
collective effects connected to pinning. Whether this is compatible with the vortex-glass 
concept is an open question. 

An obvious shortcoming of our microscopic analysis stems from the fact that results 
obtained with ‘experimental’ relaxation rates do not lead to a better quantitative agreement 
with experimental data Note, however, that the ‘experimental’ relaxation rate is obtained in 
a zero-field state [9], so it may have little to do with the relaxation rate in the mixed phase. 
Again, this points to the necessity of a truly microscopic theory of high-T, superconductivity. 
In particular, it would be useful to take into account the d-wave symmetry of the order 
parameter. It is likely that dissipation is increased with d-wave symmetry as compared to 
s wave, so that the level of dissipation within the framework of the theory described in this 
paper might be closer to experiment; the part of the flux-flow resistivity due to VL effects 
might thus be even smaller than estimated above. 

In conclusion, our microscopic theory, in spite of its. several important drawbacks, 
suggests that the appropriate approach to discussing flux-flow conductivity close to Hh(T) 
and T J H )  is to consider the enhancement of the normal-state conductivity due to order- 
parameter fluctuations, rather than the dissipation due to the thermal fluctuations of a vortex 
liquid. A clear picture of the physics involved requires, however, a fully microscopic theory 
of high-T, superconductivity. 
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Appendix 

We consider a superconductor on which is applied a transverse vector potential A(A,, 0.0). 
The perturbing Hamiltonian associated with A gives rise to fluctuations of the order 
parameter, which leads to change in the average value of the current operator 

@,,(r) and @z(r)  are the electron field operators. In linear-response theory the resulting 
current density is given by jx (q ,  CO) = Q,(q, @)A&, w )  where the quantity Qxx can be 
written as follows for uq + 0 

QxZ(-iw) = (L Al)(-iw) + 2(([j,. W ) D I ( [ ~ .  LI))(- id  (-42) 

with Y(r , i )  = @T(r,t)@J(r,t) and @(-io) = Igl/[l - lgl([*, W+l)(-iw)l. ([I) denotes 
the average value of ihe retarded product taken on the Gibbs ensemble of the unperturbed 
state of the system. The flux-flow conductivity is then given by 

cXx = lim(Qxz(-ico)/ -io). (-43) 

In a DC electric field, (Gz,jz])(-io), (GX, \VI) can be expanded in powers of w as shown 
by equations (4) and (5) and for D I  we have 

O+O 

~1 (-io) =-D, (0) - ioDj". (A4) 

Neglecting DF', which is smaller than Ajj and A,$ by a factor g / l  and reporting the results 
of equations (4), (5) and (A4) in (A3) we recover equations ( I ) ,  (2) and (3). 
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